

Evaluation of Alternative Aircraft Types Dr. Peter Belobaba Presented by: Alex Heiter

Istanbul Technical University

Air Transportation Management

M.Sc. Program

Network, Fleet and Schedule
Strategic Planning

Module 8: 29 March 2016

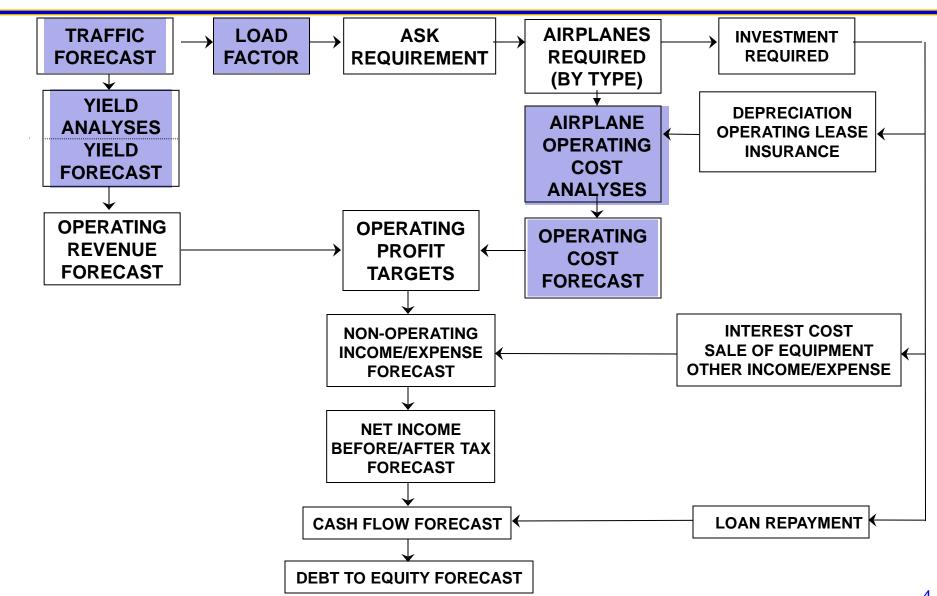
Lecture Outline

Fleet Planning Evaluation Process

- Top-down approach to capacity gap analysis
- Bottom-up micro approach

Aircraft Selection Criteria

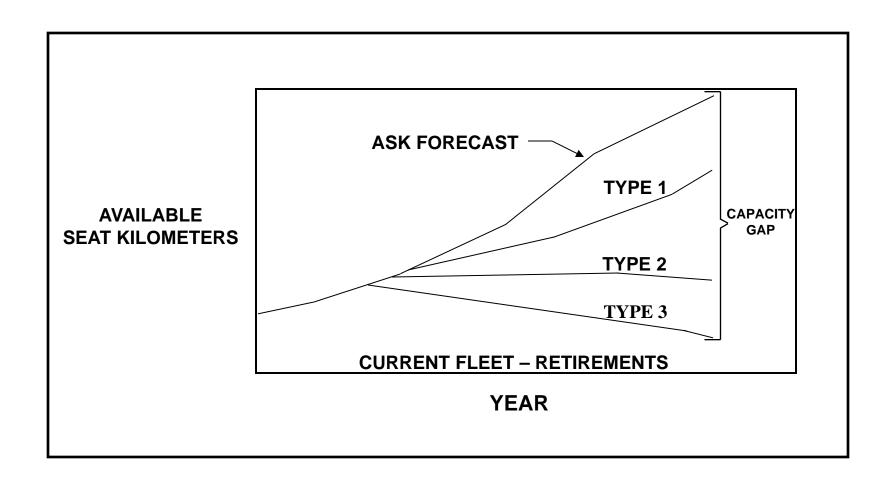
- Technical and performance characteristics
- Economics and finances
- Environmental, marketing and political issues


Financial Evaluation of Aircraft Alternatives

Review: NPV analysis and example

Fleet Planning Evaluation Process

- Fleet planning requires an evaluation process for assessing the impacts of new aircraft (next slide):
 - Traffic and yield forecasts used to estimate revenues
 - Planning ALF determines ASKs and number of aircraft required
 - Aircraft acquisition has financial impacts in terms of investment funding, depreciation, and interest expenses
 - Operating cost and revenue forecasts provide profit projections
 - Used to predict effects on balance sheet, cash flow, and debt load
- This planning process is ideally an ongoing effort that requires input from many sources:
 - A critical component of a long-term strategic planning process


Fleet Planning Evaluation Process

"Top-Down" (Macro) Approach

- Aggregate demand and cost spreadsheets used to evaluate financial impacts of aircraft options for a defined sub-system, region, or route:
 - "Planning Load Factor" establishes ASKs needed to accommodate forecast RPK growth (e.g., 80% planned ALF)
 - "Capacity Gap" defined as required future ASKs minus existing ASKs and planned retirements
 - Assumptions about average aircraft stage length and daily utilization determine "aircraft productivity" in ASKs per day, used to calculate number of aircraft required
 - Estimates of aircraft operating costs can then be used to compare economic performance of different aircraft types

Capacity Gap Analysis

"Bottom-Up" (Micro) Approach

- Much more detailed evaluation of routes and aircraft requirements allows "what-if" analysis, but requires detailed future scenarios:
 - Future route networks and schedules must be generated, and airline's share of total market demand is assumed
 - Forecasts of demand and revenues by origin-destination market are then allocated to each future flight
- With more detailed inputs, bottom-up approach provides much more detailed outputs:
 - Aircraft assignments and operating statistics by route
 - Complete projection of financial results under different fleet plans

Top-down vs. Bottom-up Fleet Planning

- Top-down approach allows for rapid evaluation of new aircraft types, given high-level assumptions:
 - Changes in traffic forecasts and/or operating costs (e.g., fuel price)
 - Airline structural changes (e.g., average stage length of flights)
- Bottom-up approach uses substantially more detail:
 - Changes to individual route characteristics can be evaluated
 - But, very difficult to incorporate future competitors' strategies
- Simpler top-down approach is commonly used, since detailed 10-15 year scenarios are highly speculative:
 - Likely to be inaccurate in face of changing market conditions
 - Political decisions can overrule "best" analysis of options

Aircraft Selection Criteria

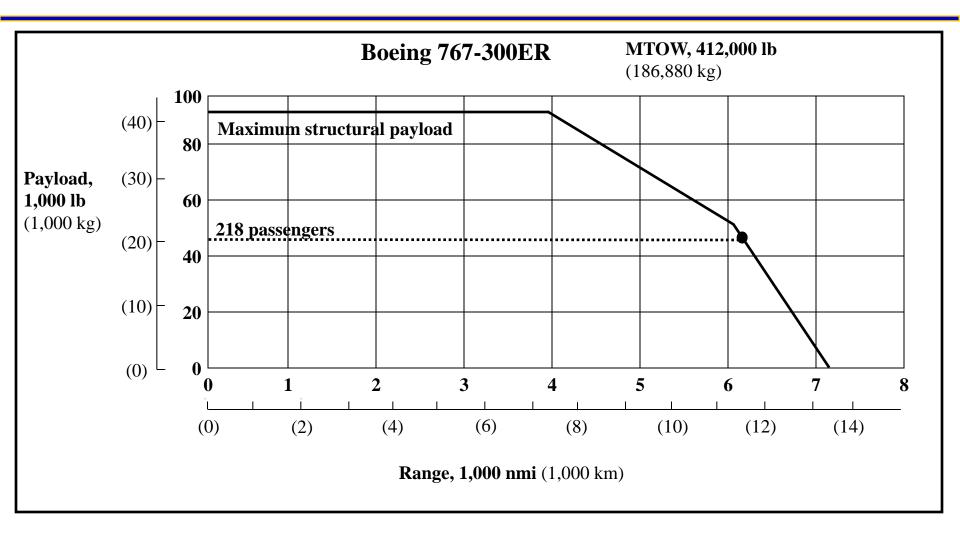
Fleet composition is an optimal staging problem:

- Number and type of aircraft required
- Timing of deliveries and retirement of existing fleet
- Tremendous uncertainty about future market conditions
- Constrained by existing fleet, ability to dispose of older aircraft, and availability of future delivery slots

Aircraft evaluation criteria for airlines include:

- Technical and performance characteristics
- Economics of operations and revenue generation
- Marketing and environmental issues
- Political and international trade concerns

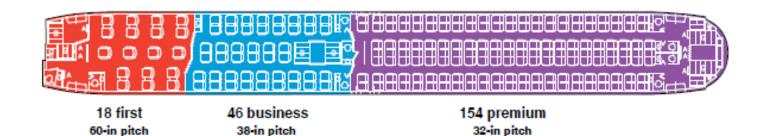
Technical/Performance Characteristics


"Payload/range curve" is most important (next slide):

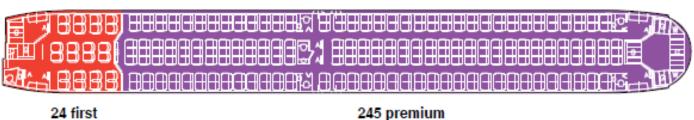
- Defines capability of each aircraft type to carry passengers and cargo over a maximum flight distance.
- Affected by aerodynamics, engine technology, fuel capacity and typical passenger/cargo configuration
- Typical shape of curve allows trade-off of payload for extra fuel and flight range, before maximum operational range is reached

Other important technical factors include:

- Maximum take-off and landing weights determine runway length requirements and feasible airports
- Fleet commonality with existing airline fleet reduces costs of training, new equipment and spare parts inventory for new types

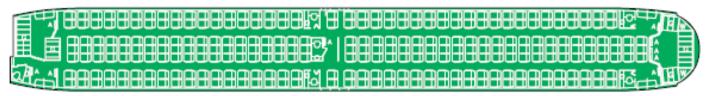

767-300ER Payload-Range Curve General Electric Engines

B767-300ER Performance Summary


				l
		General Electric		
		CF6-80C2B4F	CF6-80C2B7F	
		Basic	Maxim um	<u> </u>
Sea-level takeoff thrust*/flat-rated temperature	lb/∘F	56,500/90	Reduced at higher altitudes	
Maximum taxi weight	lb	381,000		
Maximum takeoff weight	lb	380,000	412,0 or temperatures	
Maximum landing weight	lb	320,000	320,000	
Maximum zero fuel weight	lb	295,000	295,000	
Operating empty weight	lb	199,700	199,700	
Fuel capacity	U.S. gal	24,140	24,140	
Passengers, 18 FC, 46 BC, 154 TC		218	218	
Cargo pallets/co	pallets/containers		4/14	
Design range, MTOW, full passenger payload	nmi	5,225	6,150 Can rule out	
Cruise Mach		0.80	0.8 operations to	
Takeoff field length, SL, 86°F, MTOW	ft	8,300	certain airports	
Initial cruise altitude, MTOW, ISA + 10°C	ft	35,100	33,400	
Engine-out alt. cap., MTOW, ISA + 10°C	ft	14,800	12,900	
Landing field length, MLW	ft	5,200	5,200	
Approach speed, MLW	kn	145	145	
Approach speed, 3,000-nmi mission	kn	129	129	
Fuel burn/seat, 3,000-nmi mission	lb	295.6	295.6	

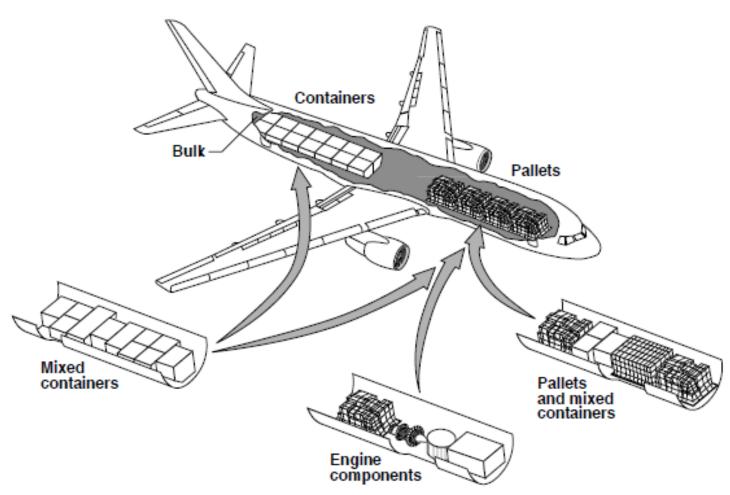
Cabin Configurations for B767-300

218 passengers


32-in pitch

38-in pitch 32-in pitch

38-in pitch


269 passengers

32-in pitch

286 passengers

Flexibility of Cargo Payload Capacity

Financial/Economic Issues

Required financing from internal or external sources:

- Cash on hand, retained earnings, debt (loans) or equity (stocks) for aircraft purchases
- Leasing can be more expensive, but also more flexible, allowing for more frequent fleet renewal and requiring less up-front capital

Financial evaluation to determine costs and revenues:

- Up-front costs include purchase price, spare engines and parts, ground equipment, training
- Newer aircraft offer lower operating costs at higher initial purchase price (vs. older aircraft that have been depreciated)
- Increased revenue potential from larger and/or newer aircraft

Other Aircraft Selection Criteria

Environmental factors:

- Noise performance has become a major concern (Stage 3 noise requirements and airport curfews on louder aircraft)
- Air pollution regulations likely to ground older aircraft

Marketing advantages of newer aircraft:

- Typically, most consumers have little aircraft preference
- However, first airline with newest type or airline with youngest fleet can generate additional market share

Political and trade issues can dominate fleet decisions:

 Pressure to purchase from a particular manufacturer or country, especially at government-owned national airlines

Objective: Maintain Fleet Flexibility in the Face of Uncertainty

Massive uncertainty over 5-30 year time horizon

- Estimates of economic growth, passenger and cargo, competition, revenues and costs all subject to error
- Detailed route/market forecasts not appropriate, use of scenario evaluation and sensitivity analysis instead

Fleet plans try to maximize future airline flexibility

- Increase use of leasing (vs. owning) aircraft can provide greater fleet flexibility (but higher costs)
- Fleet retirement plans can be adjusted with changing fuel prices
- Orders of multiple types in common rated family
- Negotiations with manufacturers to minimize firm orders and increase future options with alternative types

Financial Evaluation of Aircraft Alternatives

- Comparisons of aircraft economic performance based heavily on DOC (cash flow) analysis
 - Profit/loss approach includes aircraft depreciation
 - Averages training, financing, maintenance costs over aircraft life
- Net Present Value (NPV) analysis can be used to incorporate time value of money
 - Depends on discount rate assumptions: Tendency is to assume too low for government-supported airlines; assume too high by private airlines trying to compensate for anticipated volatility
- Cash flow NPV models combined with Monte Carlo simulation of uncertain variables
 - Probability distributions of fuel prices, exchange rates, traffic growth and yield assumptions
 - Result is a range of possible outcomes and expected value NPV

Review: NPV Analysis for Evaluation of Capital Investments over Time

- Most capital investments accrue benefits and/or costs over a multiple-year time period:
 - Net Present Value analysis applies a "discount" to both benefits and costs expected in future years
 - Discount rate captures uncertainty of future gains/losses as well as opportunity cost of alternative investments
- Evaluation of aircraft options is a good example:
 - Initial up-front capital investment, followed by many years of higher revenues, lower operating costs, etc.

The basic question: How can we compare two alternative aircraft?

The basic answer: By weighing the value each aircraft provides.

We measure the earning power of a capital asset such as a commercial airplane by estimating its future cash flows and discounting them back at the airline's cost of capital.

10-year study

10% discount rate

Pretax analysis

7,480-km average trip length

625 trips per year

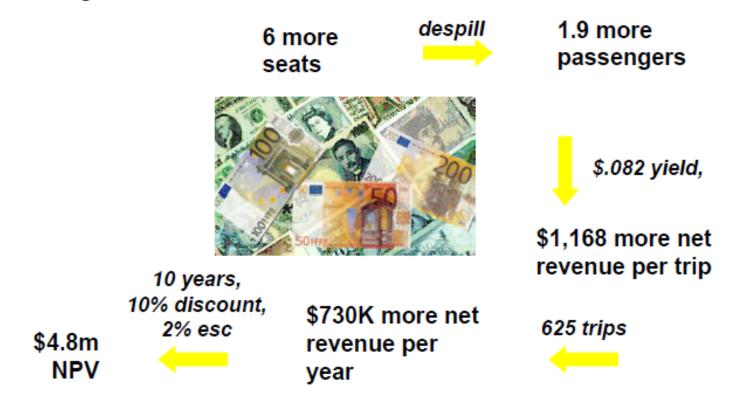
Number of seats

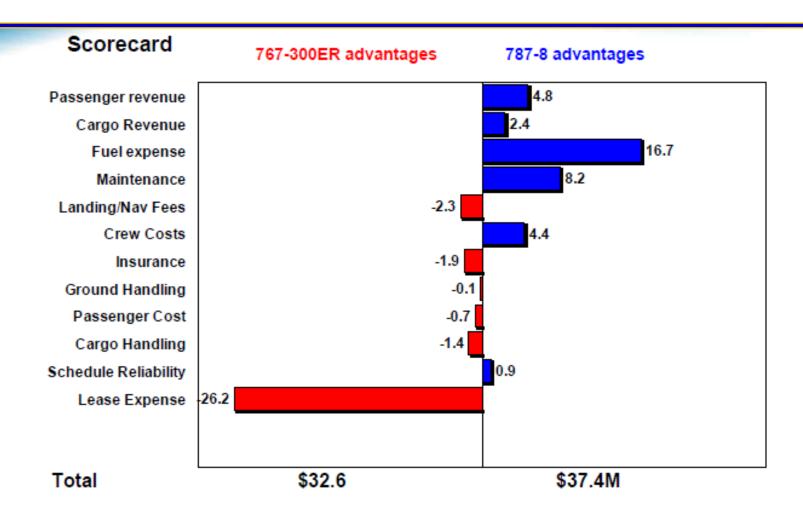
787-8
 224 seats

767-300ER
 218 seats

Age of aircraft

787-8 new


767-300ER new


Aircraft will be leased

787-8 \$1,000,000 per month

767-300ER \$650,000 per month

Passenger Revenue

